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Abstract. Precision computations of QCD and QCD+electroweak emission scattering processes
will play an important role in understanding experimental data from the LHC, and thereby in
uncovering new physics beyond the Standard Model. Recent years have seen substantial progress in
expanding our ability to perform and implement such calculations. I discuss several different topics:
the resolution of seeming discrepancies between heavy-quark predictions and measurements; the
ongoing program of next-to-next-to-leading order calculations; and also progress in merging the
parton-shower and matrix-element calculations. I will also outline some of the techniques emerging
from twistor-space string theory and its intellectual progeny.
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INTRODUCTION

As the particle-physics community looks forward to the start of the experimental pro-
gram at the LHC, we should remember that essentially every aspect of particle physics
at a hadron collider involves perturbative QCD. Calculations in QCD are therefore an
essential part of any theoretical support to this program. These include both predictions
of signals and backgrounds, as well as precision calculations needed for using W s for
luminosity measurements and for extraction of the parton distribution functions.
The requirements for QCD calculations present the theorists amongst us with a serious

challenge, because the coupling is not small and its running is important. This implies
that we have to deal with lots of jets, and to higher order if we want precision. Further-
more, because processes can involve very different scales, logarithms can be substantial,
and we have to resum them.
The technology for required perturbative calculations has advanced greatly over the

last two decades, but the calculations are still difficult. Accordingly, we must settle for a
partial attack on aspects of many processes. Indeed, for some processes, such as the
W + 4 jets processes giving the dominant background to top quark detection in the
lepton+jets channel, only the most basic perturbative QCD prediction has been available
to date.
There are two basic approaches that have been pursued by theorists to computing

collider processes: (a) general parton-level calculations (b) parton-shower calculations,
colloquially known as Monte Carlos. In the parton-level calculations, one computes all
contributions to a process of interest up to some fixed order in perturbation theory.
With the required matrix elements in hand, one can write a numerical jet program,



computing general observables. One can vary the jet algorithm, and implement arbitrary
cuts. Theorists like this approach, because one computes systematically to higher order
and higher multiplicity in perturbation theory. So long as one avoids observables with
large ratios of scales (which can lead to large logarithms needing resummation), the
results are then accurate up to higher-order corrections in αs. Experimenters dislike this
approach, because given the limited number of partons in the final state, one cannot study
a process event-by-event; one can only compare distributions of events. The limited
number of partons also makes it harder to implement faithfully the intricate cone jet
algorithm typically used by hadron-collider experiments in their analyses.
In parton-shower calculations such as implemented in PYTHIA[1] or HERWIG[2],

one has in the past started with a basic 2 → 1 or 2 → 2 perturbative process, and
added additional parton radiation using the collinear approximation. This produces a
detailed partonic picture on an event-by-event basis. It can also be used to compute
general observables, and in addition can have (and is usually used with) a model of
hadronization folded on, so that a detailed simulation of the detector is possible. For this
reason, experimenters like this approach. Theorists didn’t like the traditional parton-
shower approach as much, because it provides only a leading-log estimate (perhaps with
some next-to-leading log contributions) of observables. Accordingly, this approach was
not systematic, and not amenable to systematic improvement. The terms not included are
hard to estimate numerically, and vary widely across regions of phase space. A particular
example is the uncontrolled underestimation of wide-angle radiation.
One of the exciting developments in recent years, to which I return below, is the start

of a convergence between these different approaches, through incorporation of higher-
multiplicity and higher-order corrections into the parton-shower approach.
The incorporation of higher-order corrections will require the computation of a large

number of one-loop amplitudes. At tree level, there are a number of general-purpose
programs which can mechanically and automatically produce matrix elements for a
wide variety of processes required for collider physics. We are still far from such a
situation for one-loop corrections, because the computational complexity of traditional
diagrammatic methods is just too great. The last year has seen dramatic advances on this
front, thanks to the addition of ideas based on a twistor-space string duality to an older
non-conventional technique, the unitarity-based method for loop computations.

HEAVY-QUARK PREDICTIONS

Before turning to recent advances in these topics, let’s first review the resolution of an
old puzzle in perturbative QCD, that of heavy-quark production at hadron colliders. A
long series of comparisons between experimental measurements at CDF[3] and D0[4]
and theoretical predictions[5] for b quark production appeared to show a factor-of-two
discrepancy, with the theory underestimating production. This issue has now been laid
to rest by Cacciari, Frixione, Mangano, Nason, and Ridolfi[6]. There are several ingredi-
ents in the resolution. The first is a proper theoretical treatment of b quark fragmentation
into bottomful hadrons, as well as use of fragmentation functions extracted from e+e−
data. They also incorporated log resummation (with proper matching). A comparison to
directly-predictable data — the production of J/ψs from B decay — rather than ‘inclu-



sive b’ production also plays a role. Small changes in parton distribution functions and
αs complete the picture.

ADVANCES IN THE PARTON-SHOWER APPROACH

In the parton-shower approach as conceived in the late ’70s–mid ’80s, jet radiation is
approximated using the collinear approximation. One starts with a 2→ 2 process, gives
each outgoing parton a mass of order theQ2 of the subprocess, and lets it decay using the
appropriate Altarelli–Parisi splitting kernel. Energy-momentum conservation is adjusted
at the end. This approximation is suitable for narrow jets, where it gives the leading-
log contributions (enhancements include next-to-leading log contributions as well). In
practice, it appears to work well for jets as measured by real-world experiments. The
same approximation is also used in the basic parton-shower approach for wide-angle
radiation, in particular for additional jets. Here, the approximation is uncontrolled; and
not too surprisingly, shapes of distributions can show significant differences from parton-
level calculations. The basic parton-shower approach also does not allow for a systematic
improvement to take into account higher orders in perturbation theory, as is possible and
increasingly practiced in parton-level calculations.
Are there ways to solve these two problems, improving parton shower programs both

to higher multiplicity as well as higher order? These questions have attracted a great
deal of theoretical attention in recent years, and while the problem cannot yet be con-
sidered solved, much progress has been made. One might imagine attacking the higher-
multiplicity problem by showering off higher-multiplicity parton configurations instead
of or in addition to the basic 2→ 2 ones. This raises a double-counting problem, how-
ever, because both the higher-multiplicity parton matrix elements and the showering off
lower-multiplicity ones will contribute in the near-collinear region, that is to intra-jet
radiation. One has to separate these two contributions. In addition, one must confront
the problem that the near-collinear contributions of higher-multiplicity parton matrix el-
ements are infrared divergent. Catani, Krauss, Kuhn, and Webber[7] proposed a solution
to these problems. The basic approach is as follows: start by generating a different fixed-
order configurations, using a kT separation to eliminate the infrared divergences in the
higher-multiplicity partonic matrix elements. Each partonic configuration is assigned a
branching history, as though it came from showering, and reweighted with appropriate
Sudakov factors. Finally, showering is started at the kT at which the fixed-order contribu-
tion was cut off. The CKKW proposal has now been implemented[8] in the SHERPA[9]
generator.
If we wanted to improve a parton-shower calculation by adding loop corrections, or

equivalently improve our ability to simulate a next-to-leading order calculation at the
fine-grained level of a detector simulation, we would face a similar kind of problem.
Simply adding parton showers to an NLO calculation would double-count virtual con-
tributions.
Frixione and Webber proposed a solution to this problem, implemented in the

MC@NLO program[10]. They subtracted the double-counted terms generated by the
first branching in the shower. It has since been implemented for a number of other
processes, including heavy-quark production. The approach is not completely general,



and does require specific calculations of terms for each new process. Work continues on
more general approaches, such as one based on dipole subtraction[11]. This area seems
likely to produce further advances in coming years.

HIGHER-ORDER CALCULATIONS

Leading-order (LO) parton-level calculations require only tree-level matrix ele-
ments. There are several programs which serve as black boxes (CompHEP[12],
HELAC/PHEGAS[13], GRACE[14], Amegic[15], MadEvent[16], ALPGEN[17]), and
allow the calculation of a wide variety of such matrix elements both in the Standard
Model and popular extensions of it. Such leading-order calculations give a basic pre-
diction of event shapes, but because of the sensitivity to the renormalization scale in the
coupling, do not give a reliable quantitative prediction. They also model jets via lone
partons. This completely misses sensitivity of experimental measurements to the jet
definition, for example to such parameters as the jet cone size or minimum transverse
energy. The current state of the art in parton-level calculations for most processes
is a next-to-leading order (NLO) calculation. Such calculations incorporate one-loop
corrections. These introduce an explicit dependence on the renormalization scale, which
compensates that present in the strong couple αs, and thereby leads to a more stable,
and quantitatively reliable, prediction. In addition to the one-loop corrections, radiative
emission contributions must also be included. These real-emission contributions intro-
duce a dependence on the jet-definition parameters, thereby giving a first theoretical
approximation to this sensitivity. NLO calculations do have a greater technical com-
plexity than those at LO. The one-loop corrections have infrared divergences, which
are conventionally regulated via a dimensional regulator. The phase-space integrals
over the real-emission contributions are also infrared divergent. We want to perform the
phase-space integrals numerically while isolating the divergences, and computing the
divergences analytically. General schemes to do this in a process-independent way have
been around for a decade[18, 19, 20]. For a new process, the only new calculation one
has to do is of the corresponding one-loop amplitude. (The alternative of computing the
divergent parts numerically as well has also been tried out.)
For true precision predictions, at the percent level, NLO does not suffice; one must

go an order beyond, to next-to-next-to-leading order (NNLO). These will certainly be
required for theW+jet process, especially if one is to use it as for measuring luminosity.
Anastasiou, Dixon, Melnikov, and Petriello[22] have done semi-analytic calculations of
theW rapidity distribution. While a fully numerical program will be required to imple-
ment experimental cuts, their calculation does show that perturbation theory is settling
down nicely at this order, and that obtaining the required accuracy is feasible. NNLO
calculations should also allow better prediction of the dependence on jet definitions, as
well as a first quantitative estimate of the remaining theoretical uncertainties. Assem-
bling an NNLO prediction for, say,W+ jet production is a technically challenging task.
It is underway, but will have taken a small community many years of hard work to ac-
complish by the time it is complete. One needs two-loop matrix elements, in this case for
2 partons→W +parton[23]. Such computations were made possible several years ago
by dramatic advances in calculating multi-scale two-loop integrals[24]. In addition, one



needs the one-loop 2 parton→W + 2 parton matrix elements, which were computed a
decade ago[25, 26]; and 2 parton→W+3 parton tree-level matrix elements, which have
been known since the 1980s[27]. One needs to extract the singular parts of the two-loop
amplitudes, as well as the singular terms in the one-loop matrix elements and the doubly-
singular terms the tree-level matrix elements. The latter two types have to be integrated
over phase space in order to determine the double-real emission and the mixed real-
virtual singularities. The cancellation of singular terms has to be demonstrated, and the
remaining finite terms organized into a computer program. Hadron-collider processes
are harder, because of the need to handle initial-state factorization. It is somewhat sim-
pler — but still technically challenging — to start with the e+e− → 3 jets process, and
that is what the G3 collaboration[28] is doing.
Hadron collider processes require the NNLO corrections to the Altarelli–Parisi split-

ting kernel. Fortunately, the last couple of years have seen the completion of a landmark
calculation, several years of effort by Moch, Vermaseren, and Vogt, of this quantity[29].
The calculation confirms the stability of perturbation theory, and will be essential to any
precision physics to be done at LHC. It’s already being incorporated into the evolution
of the pdfs as used for example in their extraction. It’s also worth mentioning that the
calculation is even of interest to string theorists, since one can use it to extract anomalous
dimensions relevant to the so-called AdS/CFT correspondence[30].

LESSONS FROM TWISTOR SPACE

The last two years have seen dramatic new developments in our understanding of
gauge theories. These developments have also started to contribute practical advances
relevant to perturbative QCD computations for the LHC. The roots of these develop-
ments lie in Penrose’s invention of twistor space[31] over thirty years ago, and also in
Nair’s representation[32] of the simplest gauge-theory amplitudes, maximally helicity-
violating (MHV) ones, as correlators on ‘baby twistor space’ or CP1. The developments
flow from Witten’s conjecture[33] that N = 4 supersymmetric gauge theory is dual to
a topological string theory with a CP3|4 (that is, superprojective twistor) target space.
This duality is of a novel kind. Unlike the strong–weak coupling duality relating the

same supersymmetric gauge theory to type IIB string theory on an AdS5×S5, this con-
jectured duality is between the gauge theory in the perturbative, weak-coupling regime
and a string theory in the same regime. The conjecture has led to new representations of
tree-level amplitudes, some of which also have a field-theory interpretation, and some of
which do not appear to. It has revealed that tree (and plausibly, loop) amplitudes satisfy
unexpected differential equations. The general lesson seems to be that there is additional
structure or symmetry in gauge theories beyond what is manifest in the Lagrangian.
We can get to twistor space from the spinor-helicity representation[34] of QCD am-

plitudes that was developed in the 1980s and has been an invaluable tool in perturbative
computations ever since. If we consider a massless four-momentum k, we can form a
2× 2 complex matrix by contracting it with the Pauli sigma matrices, Kaȧ = σμ

aȧkμ .
The massless condition implies that detK = 0, so that we can write K as the tensor
product λa˜λȧ. The complex two-vectors λ and ˜λ are spinors under SU(2). If we now



Fourier-transform ˜λ , calling the conjugate variable μ , while leaving λ alone, we ob-
tain a complex four-vector ZI = (λ ,μ). Similarly, polarization vectors can be written in
terms of either λ or ˜λ and a conjugate spinor related to a lightcone ‘reference’ vector.
Defining an equivalence relation whereby ZI ≡ Y Iτ , related to the invariance (up to a
phase) of helicity amplitudes under rescalings of the spinors, defines a complex projec-
tive space, CP3. The supertwistor space in Witten’s construction is the supersymmetric
generalization obtained by adding four fermionic coordinates.
Nair’s representation appears in Witten twistor-string theory as the statement that the

MHV amplitudes are supported on CP1s (called ‘lines’) embedded in CP3|4. An n-point
MHV amplitude has n−2 gluons of positive helicity, and 2 gluons of negative helicity.
(Amplitudes with fewer negative helicities vanish.) Amplitudes with more negative-
helicity gluons are more complicated, and are represented by higher-degree curves (that
is, embeddings of the basic CP1). Roiban, Spradlin, and Volovich[35] have shown that
this representation does indeed yield the same answers as previous field-theory based
computations.
What is more surprising is that, in a manner analogous to that of a contour integral, the

twistor-string integral giving rise to these amplitudes can also be evaluated on degenerate
higher-degree curves, in particular curves made up of intersecting line segments. This
representation is not only simpler than expected in twistor space, but also has a very
simple field-theory interpretation, in the form of the Cachazo–Svrček–Witten (CSW)
construction[36]. In it, one builds up amplitudes from vertices which are simple off-shell
continuations of the MHV amplitudes, connected by scalar propagators. The vertices
have exactly two negative-helicity gluons, and an arbitrary number of positive-helicity
ones. The helicity projectors ordinarily part of the propagator here are effectively merged
into the vertices. For any given process, one includes all diagrams built out of these
vertices. Each diagram gives rise to a single factor, and so one can immediately write
down an analytic expression in terms of spinor products for a given amplitude.
Witten’s conjecture motivated a series of one-loop computations of amplitudes[37, 38]

to check their twistor-space structure. These amplitudes are indeed likely to have a sim-
ple structure in twistor space[39, 40, 38], though the twistor string itself is not com-
pletely understood at one loop[41]. More suprisingly, however, these one-loop compu-
tations led to another novel representation of tree amplitudes. This came about through
the infrared-divergent parts of the one-loop amplitudes, which are proportional to the
corresponding tree amplitudes. These turned out to have a simpler representation[42]
than would be obtained by direct calculation (or indeed by calculation from the CSW
representation). The price of the compactness was the introduction of spurious singular-
ities, present term-by-term but cancelling in the amplitude as a whole. (Such spurious
singularities arise naturally in loop computations.) This representation can also arises,
as it turns out, from a novel kind of recursion relation, an on-shell one[43]. That is,
an amplitude is written as a sum of terms, each term consisting of an ordinary prop-
agator multiplied by two on-shell amplitudes. This is quite unlike a conventional field
theory representation, where the internal lines would necessarily be off shell. Such a
representation, maintaining the on-shell conditions for all legs along with momentum
conservation, is made possible by the use of complex rather than real momenta.
Even more surprisingly, Britto, Cachazo, Feng and Witten (BCFW) showed that



these on-shell recursion relations have a simple and very general proof, relying only
on factorization and complex analysis. Accordingly, the same approach can be applied
to amplitudes in many field theories, including gravity[45]; massive theories[46]; and
even more generally, to the rational functions which are the coefficients of some of the
integrals that appear in one-loop amplitudes[47]. Moreover, a simple variant also yields
the CSW representation as an on-shell recursion relation[48].
These on-shell recursion relations are an example of how knowledge of the physical

properties of amplitudes (in this case, factorization) can be used as a tool to compute
them. This is similar in spirit to an older non-conventional method, the unitarity-based
method for loop calculations[49]. While factorization suffices for tree amplitudes, which
are rational functions of spinor products, at loop level one needs additional information.
It turns out that in supersymmetric theories, unitarity (that is, knowledge of the four-
dimensional on-shell tree amplitudes which make up the cuts) is sufficient to compute
the complete amplitude. Because of the worse ultraviolet power-counting properties of
nonsupersymmetric theories, however, there are rational terms in their amplitudes that
are not determined by four-dimensional unitarity.
WhileD-dimensional unitarity can be used to determine these terms (D= 4−2ε)[50],

the required amplitudes are more complicated. An alternative is to use factorization
to determine these terms, as was done in a computation of the matrix elements for
V → qqgg[25]. There, use of factorization required guessing an ansatz, and did not pro-
vide a systematic approach to obtaining the rational terms. An on-shell recursion rela-
tion, similar to BCFW’s, does provide such a systematic method[51]. In combination
with the unitarity-based method, it provides a powerful and efficient method for com-
puting the sorts of one-loop amplitudes that are required for the LHC. In the combined
‘unitarity-bootstrap’ approach, the cut-containing terms (the logarithms, polylogarithms,
and π2) are determined using four-dimensional unitarity. A recursion relation determines
the rational terms, and removing terms which are double-counted yields the complete
QCD amplitude. This approach has already been applied to six-point amplitudes which
have proven too difficult for conventional brute-force diagrammatic methods, and to an
infinite series of n-point amplitudes[52], a calculation which is simply not possible with
conventional techniques.
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39. F. Cachazo, P. Svrček and E. Witten, JHEP 0410:074 (2004) [hep-th/0406177]; A. Brandhuber,
B. Spence and G. Travaglini, Nucl. Phys. B 706:150 (2005) [hep-th/0407214]; F. Cachazo, P. Svrček
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